This is a state-space model defined by a Binomial measurement error and a latent Markov Chain. For more details see the BinRW vignette.
Arguments
- max_score
Maximum value that the score can take
- prior
Named list of the model's priors. If
NULL
, uses the default prior for the model (seedefault_prior()
).
Details
Details of the model are available in the paper.
Parameters
Population parameters:
sigma
: Standard deviation of the evolution ofss1
mu_logit_p10
: Population logit mean ofp10
sigma_logit_p10
: Population logit standard deviation ofp10
Patient-dependent parameters:
p10
: Probability of transitioning from state 1 to state 0logit_p10
: logit ofp10
logit_tss1_0
: Initial condition of thelogit(ss1 * (1 + p10))
Observation-dependent (patient- and time-dependent) parameters:
p01
: Probability of transitioning from state 0 to state 1lambda
: Mobility of the Markov Chain (eigenvalue of the transition matrix)ss1
: Steady state probability of state 1y_lat
: Latent score (probability)
See list_parameters(model = "BinMC")
for more details.
Priors
The priors are passed as a named list with elements sigma
, mu_logit_p10
and sigma_logit_p10
specifying priors for the corresponding parameters.
Each element of the list should be a vector of length 2, containing values for x1 and x2, x2 > 0, such as:
sigma ~ normal+(x1, x2)
mu_logit_p10 ~ normal(x1, x2)
sigma_logit_p10 ~ normal+(x1, x2)
logit_tss1_0 ~ normal(x1, x2)
NB: For sigma
and sigma_logit_p10
, usually x1=0 to define a half-normal distribution
since the parameter is constrained to be positive.
Default priors
The default prior for
sigma
translates to an odd ratio increment of at most 5 (~ 2 * upper bound of prior).The default priors for
mu_logit_p10
andsigma_logit_p10
translate to an approximately uniform prior onp10
.The prior for the initial condition of
ss1
is hard coded and a function ofp10
.
Examples
EczemaModel("BinMC", max_score = 100)
#> BinMC model (discrete)
#> max_score = 100
#> Prior:
#> - sigma ~ normal+(0,0.4)
#> - mu_logit_p10 ~ normal(0,1)
#> - sigma_logit_p10 ~ normal+(0,1.5)
#> - logit_tss1_0 ~ normal(-1,1)