This is a state-space model defined by a Binomial measurement error and a latent random walk. For more details see the vignette.
Arguments
- max_score
Maximum value that the score can take
- prior
Named list of the model's priors. If
NULL
, uses the default prior for the model (seedefault_prior()
).
Details
Details of the model are available in the paper.
Parameters
Priors
The priors are passed as a named list with elements sigma
, mu_logit_y0
and sigma_logit_y0
specifying priors for the corresponding parameters.
Each element of the list should be a vector of length 2, containing values for x1 and x2, x2 > 0, such as:
sigma ~ normal+(x1, x2)
.mu_logit_y0 ~ normal(x1, x2)
sigma_logit_y0 ~ normal+(x1, x2)
NB: For sigma
and sigma_logit_y0
, usually x1=0 to define a half-normal distribution
since the parameters are constrained to be positive.
Default priors
The default priors do not depend on
max_score
, and are printed in the examples section.The default prior for
sigma
translates to an odd ratio increment of at most 5 (~ 2 * upper bound of prior).The default priors for
mu_logit_y0
andsigma_logit_y0
translates to an approximately uniform prior ony0
.
Examples
EczemaModel("BinRW", max_score = 100)
#> BinRW model (discrete)
#> max_score = 100
#> Prior:
#> - sigma ~ normal+(0,0.4)
#> - mu_logit_y0 ~ normal(0,1)
#> - sigma_logit_y0 ~ normal(0,1.5)