Skip to contents

Performance of (population) historical forecast

Usage

add_historical_pred(
  test,
  train,
  max_score,
  discrete = TRUE,
  add_uniform = TRUE,
  include_samples = FALSE,
  n_samples = NULL
)

Arguments

test

Testing dataframe. The only requirements is that it contains a column "Score".

train

Training dataframe. The only requirements is that it contains a column "Score".

max_score

Maximum value that the score can take

discrete

Whether to estimate a discrete or continuous historical forecast

add_uniform

Whether to include samples from uniform distribution when computing a discrete historical forecast. This ensures that all states are visited.

include_samples

Whether to return samples from the historical forecast in the output

n_samples

If include_samples=TRUE, how many samples to return. When NULL, the function return the training set.

Value

Dataframe test appended by the columns "lpd", "RPS" (or CRPS if discrete=FALSE) and optionally "Samples"

Details

The continuous historical forecast is calculated by considering the training set as samples from the predictive distribution.

Examples

max_score <- 100
train <- data.frame(Score = rbinom(1e2, max_score, 0.2))
test <- data.frame(Score = rbinom(1e2, max_score, 0.5))
add_historical_pred(test, train, max_score)
#>     Score       lpd        RPS
#> 1      40 -5.303305 0.09710626
#> 2      51 -5.303305 0.14690725
#> 3      51 -5.303305 0.14690725
#> 4      55 -5.303305 0.16800178
#> 5      49 -5.303305 0.13695701
#> 6      60 -5.303305 0.19660875
#> 7      55 -5.303305 0.16800178
#> 8      53 -5.303305 0.15725551
#> 9      46 -5.303305 0.12277790
#> 10     50 -5.303305 0.14188238
#> 11     40 -5.303305 0.09710626
#> 12     55 -5.303305 0.16800178
#> 13     56 -5.303305 0.17352417
#> 14     52 -5.303305 0.15203163
#> 15     53 -5.303305 0.15725551
#> 16     55 -5.303305 0.16800178
#> 17     44 -5.303305 0.11382268
#> 18     46 -5.303305 0.12277790
#> 19     53 -5.303305 0.15725551
#> 20     45 -5.303305 0.11825054
#> 21     48 -5.303305 0.13213114
#> 22     58 -5.303305 0.18486745
#> 23     61 -5.303305 0.20262865
#> 24     43 -5.303305 0.10949432
#> 25     50 -5.303305 0.14188238
#> 26     48 -5.303305 0.13213114
#> 27     44 -5.303305 0.11382268
#> 28     42 -5.303305 0.10526546
#> 29     50 -5.303305 0.14188238
#> 30     47 -5.303305 0.12740477
#> 31     49 -5.303305 0.13695701
#> 32     47 -5.303305 0.12740477
#> 33     54 -5.303305 0.16257890
#> 34     60 -5.303305 0.19660875
#> 35     40 -5.303305 0.09710626
#> 36     59 -5.303305 0.19068835
#> 37     53 -5.303305 0.15725551
#> 38     52 -5.303305 0.15203163
#> 39     55 -5.303305 0.16800178
#> 40     46 -5.303305 0.12277790
#> 41     48 -5.303305 0.13213114
#> 42     49 -5.303305 0.13695701
#> 43     39 -5.303305 0.09317591
#> 44     55 -5.303305 0.16800178
#> 45     48 -5.303305 0.13213114
#> 46     60 -5.303305 0.19660875
#> 47     51 -5.303305 0.14690725
#> 48     49 -5.303305 0.13695701
#> 49     56 -5.303305 0.17352417
#> 50     49 -5.303305 0.13695701
#> 51     51 -5.303305 0.14690725
#> 52     52 -5.303305 0.15203163
#> 53     50 -5.303305 0.14188238
#> 54     53 -5.303305 0.15725551
#> 55     41 -5.303305 0.10113611
#> 56     49 -5.303305 0.13695701
#> 57     67 -5.303305 0.24083760
#> 58     45 -5.303305 0.11825054
#> 59     50 -5.303305 0.14188238
#> 60     47 -5.303305 0.12740477
#> 61     55 -5.303305 0.16800178
#> 62     57 -5.303305 0.17914606
#> 63     47 -5.303305 0.12740477
#> 64     50 -5.303305 0.14188238
#> 65     44 -5.303305 0.11382268
#> 66     46 -5.303305 0.12277790
#> 67     45 -5.303305 0.11825054
#> 68     47 -5.303305 0.12740477
#> 69     43 -5.303305 0.10949432
#> 70     49 -5.303305 0.13695701
#> 71     49 -5.303305 0.13695701
#> 72     51 -5.303305 0.14690725
#> 73     49 -5.303305 0.13695701
#> 74     50 -5.303305 0.14188238
#> 75     50 -5.303305 0.14188238
#> 76     47 -5.303305 0.12740477
#> 77     55 -5.303305 0.16800178
#> 78     51 -5.303305 0.14690725
#> 79     50 -5.303305 0.14188238
#> 80     55 -5.303305 0.16800178
#> 81     58 -5.303305 0.18486745
#> 82     59 -5.303305 0.19068835
#> 83     51 -5.303305 0.14690725
#> 84     45 -5.303305 0.11825054
#> 85     52 -5.303305 0.15203163
#> 86     50 -5.303305 0.14188238
#> 87     53 -5.303305 0.15725551
#> 88     59 -5.303305 0.19068835
#> 89     43 -5.303305 0.10949432
#> 90     58 -5.303305 0.18486745
#> 91     46 -5.303305 0.12277790
#> 92     37 -5.303305 0.08561372
#> 93     54 -5.303305 0.16257890
#> 94     43 -5.303305 0.10949432
#> 95     38 -5.303305 0.08934507
#> 96     39 -5.303305 0.09317591
#> 97     46 -5.303305 0.12277790
#> 98     48 -5.303305 0.13213114
#> 99     56 -5.303305 0.17352417
#> 100    42 -5.303305 0.10526546