Skip to contents

Performance of a uniform forecast

Usage

add_uniform_pred(
  test,
  max_score,
  discrete = TRUE,
  include_samples = FALSE,
  n_samples = NULL
)

Arguments

test

Testing dataframe. The only requirements is that it contains a column "Score".

max_score

Maximum value that the score can take

discrete

Whether to estimate a discrete or continuous historical forecast

include_samples

Whether to return samples from the historical forecast in the output

n_samples

If include_samples=TRUE, how many samples to return. When NULL, the samples 0:max_score are returned.

Value

Dataframe test appended by the columns "lpd", "RPS" (or CRPS if discrete=FALSE) and optionally "Samples"

Examples

max_score <- 100
test <- data.frame(Score = rbinom(1e2, max_score, 0.5))
add_uniform_pred(test, max_score)
#>     Score       lpd        RPS
#> 1      37 -4.615121 0.10089109
#> 2      51 -4.615121 0.08425743
#> 3      52 -4.615121 0.08455446
#> 4      52 -4.615121 0.08455446
#> 5      42 -4.615121 0.09049505
#> 6      44 -4.615121 0.08772277
#> 7      44 -4.615121 0.08772277
#> 8      44 -4.615121 0.08772277
#> 9      57 -4.615121 0.08900990
#> 10     51 -4.615121 0.08425743
#> 11     51 -4.615121 0.08425743
#> 12     57 -4.615121 0.08900990
#> 13     49 -4.615121 0.08425743
#> 14     44 -4.615121 0.08772277
#> 15     46 -4.615121 0.08574257
#> 16     41 -4.615121 0.09217822
#> 17     54 -4.615121 0.08574257
#> 18     55 -4.615121 0.08663366
#> 19     48 -4.615121 0.08455446
#> 20     51 -4.615121 0.08425743
#> 21     58 -4.615121 0.09049505
#> 22     51 -4.615121 0.08425743
#> 23     52 -4.615121 0.08455446
#> 24     51 -4.615121 0.08425743
#> 25     51 -4.615121 0.08425743
#> 26     43 -4.615121 0.08900990
#> 27     50 -4.615121 0.08415842
#> 28     49 -4.615121 0.08425743
#> 29     48 -4.615121 0.08455446
#> 30     47 -4.615121 0.08504950
#> 31     56 -4.615121 0.08772277
#> 32     50 -4.615121 0.08415842
#> 33     46 -4.615121 0.08574257
#> 34     48 -4.615121 0.08455446
#> 35     47 -4.615121 0.08504950
#> 36     45 -4.615121 0.08663366
#> 37     51 -4.615121 0.08425743
#> 38     50 -4.615121 0.08415842
#> 39     38 -4.615121 0.09841584
#> 40     48 -4.615121 0.08455446
#> 41     52 -4.615121 0.08455446
#> 42     46 -4.615121 0.08574257
#> 43     49 -4.615121 0.08425743
#> 44     45 -4.615121 0.08663366
#> 45     48 -4.615121 0.08455446
#> 46     55 -4.615121 0.08663366
#> 47     51 -4.615121 0.08425743
#> 48     52 -4.615121 0.08455446
#> 49     56 -4.615121 0.08772277
#> 50     45 -4.615121 0.08663366
#> 51     49 -4.615121 0.08425743
#> 52     59 -4.615121 0.09217822
#> 53     52 -4.615121 0.08455446
#> 54     46 -4.615121 0.08574257
#> 55     43 -4.615121 0.08900990
#> 56     44 -4.615121 0.08772277
#> 57     51 -4.615121 0.08425743
#> 58     41 -4.615121 0.09217822
#> 59     56 -4.615121 0.08772277
#> 60     57 -4.615121 0.08900990
#> 61     59 -4.615121 0.09217822
#> 62     51 -4.615121 0.08425743
#> 63     50 -4.615121 0.08415842
#> 64     50 -4.615121 0.08415842
#> 65     54 -4.615121 0.08574257
#> 66     58 -4.615121 0.09049505
#> 67     40 -4.615121 0.09405941
#> 68     49 -4.615121 0.08425743
#> 69     48 -4.615121 0.08455446
#> 70     47 -4.615121 0.08504950
#> 71     42 -4.615121 0.09049505
#> 72     51 -4.615121 0.08425743
#> 73     49 -4.615121 0.08425743
#> 74     54 -4.615121 0.08574257
#> 75     51 -4.615121 0.08425743
#> 76     45 -4.615121 0.08663366
#> 77     55 -4.615121 0.08663366
#> 78     55 -4.615121 0.08663366
#> 79     57 -4.615121 0.08900990
#> 80     60 -4.615121 0.09405941
#> 81     51 -4.615121 0.08425743
#> 82     52 -4.615121 0.08455446
#> 83     55 -4.615121 0.08663366
#> 84     45 -4.615121 0.08663366
#> 85     56 -4.615121 0.08772277
#> 86     51 -4.615121 0.08425743
#> 87     47 -4.615121 0.08504950
#> 88     50 -4.615121 0.08415842
#> 89     51 -4.615121 0.08425743
#> 90     49 -4.615121 0.08425743
#> 91     54 -4.615121 0.08574257
#> 92     51 -4.615121 0.08425743
#> 93     47 -4.615121 0.08504950
#> 94     50 -4.615121 0.08415842
#> 95     54 -4.615121 0.08574257
#> 96     58 -4.615121 0.09049505
#> 97     41 -4.615121 0.09217822
#> 98     47 -4.615121 0.08504950
#> 99     55 -4.615121 0.08663366
#> 100    54 -4.615121 0.08574257