Bayesian modelling to predict the evolution of eczema severity

Guillem Hurault Reiko J. Tanaka

Department of Bioengineering, Imperial College London

Introduction

Atopic Dermatitis (AD), also called eczema, is a most common chronic **skin disease** characterised by a dry, itchy skin. Given the large variation in responses to treatment from one individual to another, it is of high clinical relevance to **design personalised treatment strategies** for AD rather than using a one-size-fits-all therapy. Better **prognoses** of the course of AD severity could help choose appropriate treatment for each patient and reduce the daily fluctuation of AD symptoms (flare-up) and its impact on the quality of life. Predictive tools should ideally be **interpretable** to be accepted by clinicians, patients and meet existing regulations (e.g. GDPR). This could be achieved with prognoses based on a **mechanistic understanding** of AD pathogenesis ("double-switch model") [1].

Figure 1: Eczema lesions

Objective

Develop a predictive, mechanism-based model of the short-term evolution of eczema severity.

Methods

Data [3]: External validation

16 weeks follow-up

Corticosteroid therapy

• 2% missing values

• 334 children with moderate/severe AD

Data [2]: Model development

- 60 children with moderate/severe AD
- 6-9 months follow-up
- Daily "bother" & "scratch" scores (0-10)
 Daily "bother" score (0-10)
- Corticosteroid therapy
- 30% missing values

Model

Figure 5: Calibration curve for bother

Figure 7: Patient #2 trajectory and prediction

Figure 8: Patient #3 trajectory and prediction

External validation

Figure 2: Double-Switch model

The double-switch model is specified as a graphical model, more specifically a **Bayesian network**. The parameters of the model θ (probability distributions) are updated with Bayes's theorem when data x is observed:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$
(1)

Inference is performed with the Hamiltonian Monte-Carlo (MCMC) using the probabilistic programming language Stan.

For *i* indexing patients, k days; with D the observed severity score (bother or scratch), C the treatment, R a latent flare-up and P a latent risk; the model is defined by (priors) not shown):

$$\begin{cases} \boldsymbol{D}_{i}(k+1) \sim \mathcal{N}\left(w_{D_{i}} \cdot \boldsymbol{D}_{i}(k) + w_{C_{i}} \cdot \boldsymbol{C}_{i}(k) + R_{i}(k) + b_{D}, \sigma_{D}^{2}\right) \\ w_{C_{i}} \sim \mathcal{N}(\mu_{w_{C}}, \sigma_{w_{C}}^{2}) \end{cases}$$

Using data [3], the **RPSS is increased to 60%** (vs 50% with data [2]) confirming the generalisability of the model.

Toward optimal control

The model was extended to account for the quantity and type of treatment used (mild, moderate, potent and very potent topical steroids or calcineurin inhibitors; "step-up") and patient information (filaggrin mutation, ethnicity, sex, age).

- Fillagrin mutation was associated with lower improvement
- 64/327 patients had a significant positive response to topical steroids
- 29/327 patients had a significant positive response to step-up
- 4/327 patients had a significant positive response to calcineurin inhibitors

Conclusion

- We developed and validated a mechanism-based model of the evolution of AD with two datasets.
- Predictions are 50% to 60% better than chance
- A Sequential Monte-Carlo algorithm will be implemented to perform online learning and to be included in a Reinforcement Learning setting.

Acknowledgements

 $R_{i}(k) \sim \operatorname{Exp}(\beta = P_{i}(k))$ $\log \left(P_{i}(k+1) \right) \sim \mathcal{N}\left(\log \left(P_{i}(k) \right), \sigma_{P}^{2} \right)$

Missing scores are treated as random variables in a **semi-supervised** setting. Predictions are **calibrated** using pairwise "one-against-all" isotonic regressions.

Performance evaluation

- To make sure the model generalises well to unseen data, it is tested in a **forward** chaining setting (see figure 3).
- Predictions are evaluated using the Ranked Probability Skill Score (RPSS) and calibration curves. The RPSS measures the accuracy of an ordinal probabilistic forecast (0: chance-level, 1: perfect).

This project was supported by the British Skin Foundation. Thank you to our clinical collaborators Sinead Langan, Hywell Williams and Kim Thomas for sharing the data.

References

- [1] E. Domínguez-Hüttinger, P. Christodoulides, K. Miyauchi, A. D. Irvine, M. Okada-Hatakeyama, M. Kubo, and R. J. Tanaka, ``Mathematical modeling of atopic dermatitis reveals "double-switch" mechanisms underlying 4 common disease phenotypes," Journal of Allergy and Clinical Immunology, vol. 139, no. 6, pp. 1861--1872, 2017.
- [2] S. M. Langan, P. Silcocks, and H. C. Williams, ``What causes flares of eczema in children?,'' British Journal of Dermatology, vol. 161, no. 3, pp. 640--646, 2009.
- [3] K. S. Thomas and T. H. Sach, ``A multicentre randomized controlled trial of ion-exchange water softeners for the treatment of eczema in children: Protocol for the Softened Water Eczema Trial (SWET) (ISRCTN: 71423189)," British Journal of Dermatology, vol. 159, pp. 561--566, 6 2008.

