Compute and plot coverage of CI for different confidence level. Useful for fake data check.
Matrix of posterior samples. Rows represent a sample and columns represent variables.
Vector of true parameter values (should be the same length as the number of columns in post_samples
).
Vector of confidence levels.
Type of confidence intervals: either "eti" (equal-tailed intervals) or "hdi" (highest density intervals).
compute_coverage
returns a Dataframe containing coverage (and 95% uncertainty interval for the coverage) for different confidence level (nominal coverage).
plot_coverage
returns a ggplot of the coverage as the function of the nominal coverage with 95% uncertainty interval.
N <- 100
N_post <- 1e3
truth <- rep(0, N)
post_samples <- sapply(rnorm(N, 0, 1), function(x) {rnorm(N_post, x, 1)})
compute_coverage(post_samples, truth)
#> # A tibble: 21 × 4
#> Nominal Coverage Lower Upper
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0 0 0 0
#> 2 0.05 0.07 0.0286 0.139
#> 3 0.1 0.12 0.0636 0.200
#> 4 0.15 0.17 0.102 0.258
#> 5 0.2 0.26 0.177 0.357
#> 6 0.25 0.31 0.221 0.410
#> 7 0.3 0.33 0.239 0.431
#> 8 0.35 0.34 0.248 0.442
#> 9 0.4 0.38 0.285 0.483
#> 10 0.45 0.45 0.350 0.553
#> # ℹ 11 more rows
plot_coverage(post_samples, truth)